
 123

MOBILE AGENT LOCATION MANAGEMENT

IN GLOBAL NETWORKS

R.B. PATEL
Department of Computer Engineering

M.M. Engineering College, Mullana, Haryana, India
e-mail: patel_r_b@indiatimes.com

Nikos E. MASTORAKIS
Department of Computer Science

Military Institute of University Education/Hellenic Naval Academy
Terma Hatzikyriakou 18539, Piraeus, Greece

e-mail: mastor@wseas.org
Kumkum GARG

Department of Electronics and Computer Engineering
IIT Roorkee

Roorkee 247667, Uttaranchal, India
e-mail: kgargfec@iitr.ernet.in

Abstract

Mobility management is a necessity in highly dynamic and large-scale

Mobile Agents (MAs) networks, especially in a multi-region environment in
order to control and communicate with agents after launching. Existing
mechanisms for locating MAs are not efficient as these do not consider the
effect of location updates on migration time and produce network overload.
This paper presents a hierarchical model for location management of MAs in
global networks. Three protocols are developed, namely search, update and
search-update. The location management technique uses one combination of
search, update and search-update protocols throughout execution. Three
cases are considered for Update and Search-Update Protocols. Thus, nine
combinations of location management protocols are generated, from which
an agent can dynamically select one as per requirement, to communicate
with other agents on the global network. We have implemented these
protocols on the system developed at IIT Roorkee, to evaluate the
performance. Results indicate that overhead generated by these protocols
does not affect the actual agent response and migration time1.

Key-words: location management, Mobile Agent, MA, update

protocol, search protocol and search-update protocol

JEL Classification: L86, O30

1 Paper presented at the Annual International Conference in Economics, Informatics

and Communications Field, Spiru Haret University, Campulung Muscel, 21-22 May 2010.

 124

Reference to this paper should be made as follows: Patel, R.B., Mastorakis,
N.E. and Garg, K. (2007) ‘Mobile agent location management in global networks’,
Int. J. Information and Communication Technology, Vol. 1, No. 1, pp. 26-37.

MA location management in global networks
Biographical notes: R.B. Patel received PhD from IIT Roorkee in Computer

Science and Engineering, PDF from HIEST, Athens, Greece, an MS from BITS
Pilani and a BE in Computer Engineering from M.M.M. Engineering College,
Gorakhpur, UP. He has published about 50 research papers in
International/National Journals and Refereed International Conferences. He has
been awarded for the Best Research paper by Technology Transfer, Colorado,
Springs, USA, for his security concept provided for mobile agents on open network
in 2003. He has written five books for engineering courses. His current research
interests are in Mobile and Distributed Computing, Mobile Agent Security and
Fault Tolerance, development infrastructure for mobile and peer-to-peer
computing, Device and Computation Management, Cluster Computing, etc.

Nikos E. Mastorakis received a PhD in Electrical Engineering and Computer
Science from the National Technical University of Athens. He is a Full time
Professor and the Head of the Department of Computer Science at the Military
Institutions of University Education -Hellenic Naval Academy, Greece since 1994.
He was Editor-in-Chief in more than 12 Journals. He has published more than 200
research papers in International Journals, transaction and Conferences. His research
areas are Mobile Agents, Neural Networks, Genetics Algorithms, E-Commerce,
Fuzzy Systems, etc.

Kumkum Garg has been on the faculty of the Department of Electronics and
Computer Engineering, IIT Roorkee, since 1976, having done her BE and ME in
1971 and 1976, respectively, from the same Department. She received her PhD in
Distributed Computer Systems from Imperial College of Science and Technology,
University of London, UK in 1984. Currently she is coordinating a natural
programme for HRD development in IT at IIT, Roorkee. Her research interests are
in Computer Networks, Natural Language Processing, Evolutionary Computing,
Distributed Computing, Mobile Agent and Mobile Agent Security. She is a senior
member of the IEEE Computer Society and fellow of IE (I).

1. Introduction
A Mobile Agent (MA) (Picco, 2001) is a software process, which can move

autonomously from one physical network location to another. The agent performs
its job wherever and whenever it is found appropriate and is not restricted to be
colocated with its client. Thus, there is an inherent sense of autonomy in the
mobility and execution of the agent. Agents can be seen as automated errand boys
who work for users. MA research evolved over the past years from the creation of
many different monolithic Mobile Agent Systems (MASs), often with similar
characteristics and built by research groups spread all over the world, for
optimisation and better understanding of specific agent issues (Picco, 2001;
Tripathi et al., 2001).

 125

As large-scale MASs are the next trend following the popularity of MA
technology, the collaborations between roaming agents has increased. There should
be an efficient mobility management for locating MAs as part of the agent
communication platform. The basic operations associated with mobility
management are:

1. A roaming agent updates its location frequently to the central management
server, that is, a directory server (Stanski et al., 1998).

2. The agent management server refreshes the current location record of the
agent in its location database.

3. When there is a request asking for the location of the agent, the
management server searches the database and replies with the current location of
the MA. Besides these three basic steps, the server may also process issues such as
out-of-date location records. Most existing MASs have provided partial mobility
management, by defining different naming and locating mechanisms.

The ability to locate MAs while they are migrating from one node to another
one is of great importance for the development of agent-based applications which
have to work in geographically distributed environments (van Steen et al., 1998).
This issue becomes even more important when focus is shifted from distributed
application limited in space, to distributed application whose environment is spread
all over the Internet. None of the Java-based MA platform provides a
comprehensive, effective location management system. In any case these
mechanisms are strictly tied with the platform that they are designed for without
exploiting existing techniques for searching or locating objects in the Internet.
When a global environment such as the Internet is considered, a centralised naming
protocol quickly becomes a bottleneck for the system, providing poor performance.
Distributed techniques and algorithms are often more effective even if their
implementation is more difficult (Bernardo and Pinto, 1998; Lazar et al., 1998;
Roth and Peters, 2001).

Location management is an important issue in MA computing. It consists of
location updates, searches and search-updates: An update occurs when a MA
changes location. A search occurs when a MA/Agent Host (AH) (Patel and Garg,
2004; Patel, 2004) wants to communicate with a MA whose location is unknown to
the requesting agent/host. A search-update occurs after a successful search, when
the requesting agent/host updates the location information corresponding to the
searched MA. The goal of a good location management protocol should be to
provide efficient searches and updates. The number of messages sent, size of
messages and distance the messages need to travel, characterise the cost of a
location search and update protocol. An efficient location management protocol
should attempt to minimise all these quantities. Hence, a new protocol is required
that would generate minimum overhead and be suitable for both global and local
area networks.

This paper reports several location management protocols based on a
hierarchical tree structure database. It also reports on the results of implementations
carried out to evaluate the performance of proposed location management protocols
for various call and mobility patterns. Platform for Mobile Agent Distribution and
Execution (PMADE), developed at IIT Roorkee, is used as the development
platform (Patel and Garg, 2004; Patel, 2004).

 126

The rest of this paper is organised as follows: Section 2 reports on a system
model for a distributed system with MAs. Section 3 presents proposed location
management protocols. Evaluation results are shown in Section 4. Conclusions are
given in Section 5.

2. System model
In PMADE, agent location is based on some assumptions for the distributed

environment, as shown in Figure 1. We have assumed that the global network
environment is divided into network domains, regions (subnetworks) and
AHs (local sites). Further, there is a Domain Management Server (DMS) in each
network domain which has information about all other DMSs in the global
network. It also has information about all the regions in the network domain. It is
responsible for maintaining uniqueness of names of regions, which are part of that
network and helps to identify the region in which an agent is present.

Fig. 1. Structure of a distributed environment

Each DMS maintains a Domain Agent Database (DAD), for information

about the current location of all agents which were created in that domain or
transited though it. Every region maintains information about all AHs that are part
of that region. An AH can be a member of an existing region or can start in a new
region. In each region, a Region Agent Database (RAD) is present at an AH which
runs at the gateway of a subnetwork. It contains location information about each
agent that was created in that region or transited through it. This host acts as the
Agent Name Server (ANS) (Terry, 1985), which manages the RAD. ANS is
responsible for maintaining uniqueness of names of all MAs, created in that region.
When a new agent is created, the user assigns a name to it by registering in the
RAD of its birth region.

Each entry of DAD of the form (A, FD, r) represents that agent A can be
found in region r of the foreign network domain FD or it has transited from that
network domain or region. Each entry of RAD of the form (A, r, Nil) represents the
region r where agent A was found or transited through it. Similarly (A, Nil, AH)
represents an agent A which exists in that region at AH. For DAD and RAD, the
primary key is the agent name A.

 127

Agent migration from one network domain to another is always
accomplished through the DMS. During inter domain migration the agent has to
update location information in the DAD of the present domain and register in the
DAD of the target network domain.

For intra region migration, it has to update its location information in the RAD
of that region. This is an Intra Region Location Update. During inter region
migration, the agent has to update the location information in the RAD of present
region and register in the RAD of the target region, specifying the host in that
region to which it is migrating. Any location protocol for MAs deals with three
aspects: name binding, migration and location, each related to a particular phase in
the agent’s lifetime.

Mobile networks generally comprise of a static backbone network and a
wireless network. There are three distinct sets of entities, namely MAs, mobile
hosts (MHs) and fixed hosts. A host that can move while retaining its network
connection is called a MH. The static network comprises of the fixed hosts and the
communication links between them. Some of the fixed hosts, called Base Host
(BH) are augmented with a wireless interface and they provide a gateway for
communication between the wireless network and the static network (Patel, 2004).

Due to the limited range of wireless transreceivers, a MH/MA can
communicate with a BH. The geographical area covered by a region is a function
of the medium used for wireless communication. Currently, the average size of a
region is of the order of 1–2 miles in diameter. As the demand for services
increase, the number of regions may become insufficient to provide the required
grade of service. Region splitting can then be used to increase the traffic handled in
an area without increasing the bandwidth of the system. A MA communicates with
one BH at any given time. The BH is responsible for forwarding data between the
MH/MA and the static network.

Due to mobility, MH/MA may cross the boundary between two regions while
being active. Thus, the task of forwarding data between the static network and the
MH/MA must be transferred to the new regions. This process, known as handoff, is
transparent to the mobile user (Kessler et al., 1995). The initiative for a handoff can
come from the MH or the BHs. Handoff helps to maintain an end-to-end
connectivity in the dynamically reconfigured network topology.

3. Location management protocol
A location management protocol is a combination of a search protocol, an update

protocol and a search-update protocol. Only the location management protocols in the
absence of a Home Location Server (HLS) are discussed in this paper.

3.1. Logical network architecture
A Global network consists of MAs, MASs and Location Servers (LSs). The

Logical Network Architecture (LNA) is a hierarchical structure (a tree with H
levels) consisting of BHs and LSs. As shown in Figure 2, the BHs are located at the
leaf level of the tree. Each BH maintains information about the agents residing in
its region. The other nodes in the tree are called LSs. Each LS maintains
information regarding MAs residing in its subtree.

 128

Fig. 2. Logical network architecture

Each communication link has a weight attached to it. The weight of a link is

the cost of transmitting a message on the link. Let l[src][dest] represent the link
between nodes src and dest and let w(l) represent the weight (or cost) of link l. The
cost depends on the size of the message, the distance between the hosts (agents),
and the bandwidth of the link. For analysis purposes, we assume that, for all l, w(l)
= 1. Essentially, the cost metric is the number of messages sent.

3.2. Data structures
There is a unique ‘home’ address for every MA. The home address is the

identifier/name of the MA. The ‘physical’ address of a MA might change, but its
home address remains the same, irrespective of the agent location (Patel, 2004;
Stefano and Santoro, 2002). Each LS maintains an address matching table that maps
the home address to the physical address of the MAs residing in the subtree beneath
it. Thus, the problem of location management basically focuses on the management
of the address matching tables.

There is a location entry in a LS corresponding to an agent A, if it is in a
region in the subtree under LS. If A moves to a region which is not in the subtree
under LS, then the entry corresponding to A is updated at LS. All the nodes
maintain location information using three-tuples which have the following
elements:

1. MA identifier (id) (given by agent naming server)
2. forwarding pointer destination (fp_dest) and
3. time at which last forwarding pointer update took place ((fp_time).
Each LS maintains a three-tuple for each MA residing in the subtree beneath

it and each BH maintains a three-tuple for each MA residing in its region. The
default value of fp_dest and fp_time is NULL. If the fp_dest field of an agent A is
NULL in LS L, then, A is not in a region in the subtree under L. Let us suppose that
we are using a protocol which uses forwarding pointers for location updates. Let A
reside initially in the region r. The BH of region r will have an entry (A, NULL,
NULL). Let there be a LS L which maintains information about the agents residing
in r. There will be an entry (A, r, NULL) corresponding to A at L. Let A move to a
new region r ', which is not a part of the subtree of L. Let t be the local time at the
BH of r when change of location of A is recorded at BH. Let t be the local time at L
when the change of location of A is recorded at L. Thus, the location information of
A will be (A, r, t) at L and (A, r, t) at BH of region r.

 129

Note: The above data structures contain fp_time field to store time. The
fp_time entry for a data structure on a node, say v, contains the local time at node v
when the data structure was last modified. We will denote this time by t in the
following. It should be noted that the correctness of the algorithms does not require
the clocks at various nodes to be tightly synchronised.

3.3. Initial conditions
It is assumed that, initially location information of the MAs is stored in the

corresponding LSs, that is, each LS has the correct location information for all the
agents residing in the region in its subtree. Thus, the root LS should have the
correct location information of all agents in the system. In Figure 3, nodes LS_7 are
LSs and BH8-15 are BHs. There are two MAs A1 and A2. In the initial state, agent A1
is in region 8 and A2 is in region 12. Initially, the correct location information of
agent A1 will be available at LSs LS4, LS2 and LS1. Likewise, the location
information of A2 will be available at LSs LS6, LS3 and LS1. Thus, the location
information of an agent is available at all the LSs located on the path from its
current BH to the root.

3.4. Update protocol
The protocol for updating the location information at the LSs and the BHs,

when a MA moves, is as follows: Let src and dest be the source and destination
regions, respectively. Let A be the identifier of the MA. Let t denote the local time
at a node when a change in location of A is recorded at that node. The value of t
will be different at different nodes. For this protocol we have considered three
cases as follows.

Case 1 Single Updates (SU): in this the update takes place only at the BH of
the source and destination regions. A forwarding pointer is kept at the source BH.
The updated entry at the source BH becomes (A, dest, t). An entry for agent A, (A,
NULL, NULL) is added at the destination BH. The location information at the LSs
are not updated. The cost of update is zero because there is no update message being
sent.

Case 2 Full Updates (FU): upon a move, apart from BHs involved (i.e., BH
of the source and destination regions), location updates take place in all the LSs
located on the path from the BH of the source and destination region to the root.
Details are as follows:

Source region: (1) At the BH: for agent A, set fp_dest = dest and fp_time = t.
The updated entry for agent A at the BH becomes (A, dest, t). (2) All LSs on the
path from src to the root: the BH of src sends update message to these LSs. Upon
receipt of the update message, the LSs update the entry for A to (A, dest, t).

Destination region: (1) At the BH: an entry (A, NULL, NULL) is added for
agent A. If there was an old entry for A, it is overwritten by this new entry. At any
node, there can be only one entry per agent.(2) All LSs on the path from dest to the
root: the BH of dest sends update message to these LSs. Upon receipt of the update
message the LSs create an entry. If there was an old entry, it is over written by this
new entry.

 130

3.5. Search protocol
If agent A in region R wants to communicate with another agent A′, A has to

know the location of A′. This requires that agent A search for agent A′. As stated
earlier, we do not make explicit use of HLSs for searches. The search process in the
absence of a HLS is as follows.

1. If the BH of R has no location information for A′, it forwards the location
query to the next higher-level LS on the path to the root.

2. If the LS does not have any location information for A′, it again forwards
the location query to the next higher-level LS on the path to the root.

3. Repeat 1 & 2 until a LS which has location information for A′ is reached.
4. If the location information (i.e., region identifier, say S) for A′ is obtained,

the location query is forwarded to the BH of region S. Agent A′ will either be in
region S or the BH will have a forwarding pointer corresponding to A′.

5. If A′ is in region S, the search is complete. Else, a chain of forwarding
pointers is traversed until BH of the containing agent A′ is reached.

3.6. Search-update protocol
Location management becomes more efficient if the location updates also

take place after a successful search. For example, suppose there is an agent A that
frequently calls A′. It may be useful to update the location information of A′ after a
successful search, so that if A calls again, the search cost is likely to be small. The
location information update takes place at the BH of the caller agent.

Fig. 3. Logical network

Case 1 No Update (NU): there are no location updates, the fp_time field of

the entry corresponding to A' at the BH on the search path is updated to the current
time at the BH. The cost is zero. This is because the update of the time field could
be done during the search process itself and no additional message needs to be sent
for this purpose. The update in fp_time is done to avoid purging of the forwarding
pointer data at the BHs. The purge protocol is explained in the next section.

 131

Case 2 Jump Update (JU): a location update takes place only at the caller
agent’s BH, that is, BH of region K. The entry for A' at the BH of region K is set to
(A', K', t), where t is the local time at the BH when the location information is
updated. This update cost is 1. This is because only one message needs to be sent
from BH of K' notifying the location information of agent A'.

Case 3 Path Compression Update (PCU): upon a successful search, a
location update takes place at all the nodes in the search path. All the LSs on the
search path have the entry of A' updated to (A', K', t) where t is the local time at the
LS when the location information is updated. All the BHs on the search path
including the caller agent’s BH have an entry of A' updated to (A', K', t), where t is
the local time at the BH when the location information is updated. In Figure 3, let
agent A1 calls agent A2. Suppose the location information of A2 is available only
at the LS6, LS3 and LS1. Using the search protocol described previously, the
search path will be BH8—> LS4—> LS2—> LS1—> BH12. The location updates
take place at LS, LS and LS and BH. The update cost is the length of the search
path that is in this example is 4.

3.7. Purging protocol
We need to periodically purge stale forwarding pointers at the LSs and the

BH. This should be done in order to save storage space at the nodes and avoid
storing stale location information.

We use a parameter called Maximum Threshold Call Interval (MTCI) to
decide whether to purge the forwarding pointer information or not. Let the current
time be curr_time. If fp_time ^ NULL and curr_time - fp_time > MTCI then the
entry for the agent is purged from the BH, if some other agents in the system have
recently used the forwarding pointer information of BH. In the LSs, if curr_time -
fp_time > MTCI for MA, the location entry for that agent is purged.

When SU and LU cases of update protocol are used, the forwarding pointers
at higher-level LSs do not get updated and become stale. Thus, these forwarding
pointers get purged periodically. However, some of the searches for the agent
might reach the higher levels. If the LSs at the higher levels do not have
information about the agent, the root has to broadcast to determine the location. To
avoid this, the forwarding pointers at the LS on the path to the root from the current
BH must be updated periodically along with purging. The current BH of each MA
achieves this by sending a location update message to the LSs on the path to the
root.

Note: the fp_time value for an agent residing in the region will be NULL. So
we are considering agents which are currently not residing in the BH’s region and
whose forwarding pointer information is stored at the BH.

4. Evaluation results
Our tests took place in a 10/100 MBps switched LAN that connects 850

workstations and personal computers and is used by about 500 hundred researchers
and students. We ran PMADE equipped with the developed protocols on several P-
4, 3 GHz machines. The Agent Submitter (AS) node and AH nodes have 256 MB
main memory, while the LS (AH at the root) has 512 MB. We used the j2sdk 1.4.1
Java Virtual Machine with native thread support.

 132

First, we tested the capacity and performance of our storage backend. The LS
(root AH) was able to hold up to 4 × 106 entries before the system ran out of
memory (Figure 2). This means that, given an extreme of 8 × 108 Internet users
(NUA estimates there were more than 605.60 million users online in the Internet on
September 2002, http://www.nua.com/surveys/how_many_online) each running
100 MAs simultaneously, about 20,000 LSs would be required to keep all entries.
This is less than 0.0057% of the hosts in the Internet, according to ISC estimates
(ISC estimates there were more than 350,000,000 hosts in the Internet in January
2005, http://www.isc.org/ds) at the time of writing.

Next, we let up to eight agents/ASs send requests concurrently. Table 1 gives
the response rates we measured in tests with a single agent/AS, sorted by request
type. Secured registration was slowest, as could be expected. However, this type of
request is required only once per agent. In this test the LS handled about 400 agent
lookup requests per second, which includes processing overhead at the AS (ASs
start requests in parallel threads). Figures 4 and 5 show the response rates we
measured for concurrent lookup requests with one to eight agents/ASs (average of
6000 measured values taken).

Table 1

Size of request packets and average processing time of the searching service
with one agent/AS, by request type

Type Length Mean

time
Reques

ts/sec
Action of

Lookup 32
bytes

4.7 ms 313 Location
search Registration

secured
431

bytesa
11 ms 15 Init

Update 103
bytesa

1 ms 150 Location
update Register

unsecured
103

bytesa
5 ms 270 LS

a The lengths marked which might differ depending on the length of the stored
location reference

The average number of requests handled by a LS

 133

Fig. 5. Response times

With two or more agents/ ASs, the response rate jumps from about 210

requests per second to roughly 332 and remains more or less stable at this mark
(with one agent/AS, the AH has idle time, with two or more it becomes congested).
Table 2 gives how response times develop with an increasing number of
agents/ASs. With about 2626 agents/ASs, requests take longer than 13 sec to
process, which causes network connections to time out for few agents.

Table 2

Agent response time (includes Agent Migration Time, Agent Decryption Time,
User/Agent Authentication Time, Result Encryption and Packaging Time)

No. of AH 1 2 4 8

16
32 64 128 256 512

No. of
agents/AS

1 2 4 8
16

32 64 128 256 512

Response
time

301
ms

572
ms

1 sec,
500 ms

2 sec,
4 sec,
3 ms
3 ms

6 sec,
6 ms

10 sec,
510 ms

21 sec,
21 ms

53
sec

154 sec,
100 ms

We also measured the impact of the location service (search and update)

integration on the migration time of MAs in the PMADE. Without location service
integration, we measured an average of 140 milliseconds per migration of a simple
benchmark agent, compared to with location service (search and update), which we
consider tolerable (Table 3).

 134

Table 3
Effect of LSs on Agent Migration Time (size of agent is considered

10.203 KB

No. of LSs 1 2 3 4
Agent migration time when LSs are active (ms) 145.7 147 148.1 150
Agent migration time when LSs are not active (ms) 140 140 140

5. Conclusion
In this paper, we have presented several location management protocols

based on a hierarchical tree structure database. These location management
protocols use one combination of search, update and search-update protocols
throughout the execution.

We have applied these protocols in the real life application implementation
developed on PMADE. It is found that overhead generated by them does not affect
the actual agent response and migration times.

REFERENCES

• Kessler I. Bar-Noy, and Sidi M. (1995) ‘Mobile users: to update or not to

update?’ ACM-Baltzer Journal of Wireless Networks, Vol. 1, No. 2, pp.175–
186.

• Bernardo L. and Pinto P. (1998) ‘A scalable location service with fast update
responses’, IEEE Global Telecommunications Conference (GLOBECOM
’98), 8–12 November, Sydney, Australia, pp.2876–2881.

• Lazar S., Whereon I.P. and Sidhu D.P. (1998) ‘A scalable location tracking
and message delivery scheme for mobile agents’, Proceedings of the Seventh
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’98), 17–19 June, Palo Alto, CA: IEEE Computer
Society, pp.243–249.

• Patel R.B. (2004) ‘Design and implementation of a secure mobile agent
platform for distributed computing’, PhD Thesis, Department of Electronics
and Computer Engineering, IIT Roorkee, India, August.

• Patel R.B. and Garg K. (2004) ‘A new paradigm for mobile agent
computing’, WSEAS Transaction on Computers, Vol. 3, No. 1, pp.57–64.

• Picco G.P. (2001) ‘Mobile agents: an introduction’, Microprocessors and
Microsystems, Vol. 25, No. 2, pp.65–74.

• Roth V. and Peters J. (2001) ‘A scalable and secure global tracking service
for mobile agents’, G. Picco (Ed). Proceedings of the Fifth International
Conference on Mobile Agents (MA2001), Atlanta, Georgia, USA, LNCS
2240, Springer Verlag, pp.169–181.

• Stanski P., Thompson D., Nzama M., Zaslavsky A. and Craske N. (1998)
‘Automating directory services for mobile agent tracking’, IEEE Global

 135

Telecommunications Conference (GLOBECOM ’98), 8–12 November,
Sydney, Australia, pp.1947–1951.

• Stefano D. and Santoro C. (2002) ‘Locating mobile agents in a wide
distributed environment’, IEEE Transaction on Parallel and Distributed
Systems, Vol. 13, No. 8, pp.844–864.

• Terry D.B. (1985) ‘Distributed name servers: naming and caching in large
distributed computing environments’, PhD Thesis, University of California,
Berkely, Available as UCB/CSD Technical Report 85-228 and as Xerox
PARC Technical Report CSL-85-1.

• Tripathi R., Ahmed T. and Karnik N.M. (2001) ‘Experiences and future
challenges in mobile agents programming’, Microprocessors and
Microsystems, Vol. 25, No. 2, pp.121–129.

• Van Steen M., Hauck F.J., Homburg P. and Tanenbaum A.S. (1998)
‘Locating objects in wide-area systems’, IEEE Communications Magazine,
January, pp.104–109.

 136

